The Number of Synaptic Inputs and the Synchrony of Large, Sparse Neuronal Networks
نویسندگان
چکیده
The prevalence of coherent oscillations in various frequency ranges in the central nervous system raises the question of the mechanisms that synchronize large populations of neurons. We study synchronization in models of large networks of spiking neurons with random sparse connectivity. Synchrony occurs only when the average number of synapses, M, that a cell receives is larger than a critical value, Mc. Below Mc, the system is in an asynchronous state. In the limit of weak coupling, assuming identical neurons, we reduce the model to a system of phase oscillators that are coupled via an effective interaction, gamma. In this framework, we develop an approximate theory for sparse networks of identical neurons to estimate Mc analytically from the Fourier coefficients of gamma. Our approach relies on the assumption that the dynamics of a neuron depend mainly on the number of cells that are presynaptic to it. We apply this theory to compute Mc for a model of inhibitory networks of integrate-and-fire (I&F) neurons as a function of the intrinsic neuronal properties (e.g., the refractory period Tr), the synaptic time constants, and the strength of the external stimulus, Iext. The number Mc is found to be nonmonotonous with the strength of Iext. For Tr = 0, we estimate the minimum value of Mc over all the parameters of the model to be 363.8. Above Mc, the neurons tend to fire in smeared one-cluster states at high firing rates and smeared two-or-more-cluster states at low firing rates. Refractoriness decreases Mc at intermediate and high firing rates. These results are compared to numerical simulations. We show numerically that systems with different sizes, N, behave in the same way provided the connectivity, M, is such that 1/Meff = 1/M - 1/N remains constant when N varies. This allows extrapolating the large N behavior of a network from numerical simulations of networks of relatively small sizes (N = 800 in our case). We find that our theory predicts with remarkable accuracy the value of Mc and the patterns of synchrony above Mc, provided the synaptic coupling is not too large. We also study the strong coupling regime of inhibitory sparse networks. All of our simulations demonstrate that increasing the coupling strength reduces the level of synchrony of the neuronal activity. Above a critical coupling strength, the network activity is asynchronous. We point out a fundamental limitation for the mechanisms of synchrony relying on inhibition alone, if heterogeneities in the intrinsic properties of the neurons and spatial fluctuations in the external input are also taken into account.
منابع مشابه
Synchronization in Neuronal Networks with Electrical and Chemical Coupling
Synchronized cortical activities in the central nervous systems of mammals are crucial for sensory perception, coordination, and locomotory function. The neuronal mechanisms that generate synchronous synaptic inputs in the neocortex are far from being fully understood. This thesis contributes toward an understanding of the emergence of synchronization in networks of bursting neurons as a highly...
متن کاملSynchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity
In model networks of E-cells and I-cells (excitatory and inhibitory neurons, respectively), synchronous rhythmic spiking often comes about from the interplay between the two cell groups: the E-cells synchronize the I-cells and vice versa. Under ideal conditions-homogeneity in relevant network parameters and all-to-all connectivity, for instance-this mechanism can yield perfect synchronization. ...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملAnalytical condition for synchrony in a neural network with two periodic inputs.
In this study, we apply a mean-field theory to the neural network model with two periodic inputs in order to clarify the conditions of synchronies. This mean-field theory yields a self-consistent condition for the synchrony and enables us to study the effects of synaptic connections for the behavior of neural networks. Then, we obtain a condition of synaptic connections for the synchrony with t...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 12 5 شماره
صفحات -
تاریخ انتشار 2000